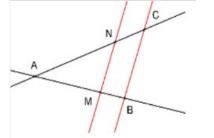
I) Théorème de Thalès

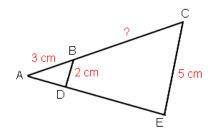

1) Le théorème de Thalès

de Thalès

Théorème Si les droites (NC) et (BM) sont sécantes en A

et si les droites (MN) et (BC) sont parallèles,

alors on a l'égalité de Thalès :
$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$



Propriétés Le triangle AMN est une réduction ou un agrandissement du triangle ABC.

On dit que les triangles AMN et ABC sont semblables

Exemple 1 Les droites (BD) et (CE) sont parallèles.

Calculer AC

On sait que (BD) // (CE), D'après le théorème de Thalès,

On a
$$\frac{AB}{AC} = \frac{AD}{AE} = \frac{BD}{CE}$$

donc
$$\frac{3}{AC} = \frac{AD}{AE} = \frac{2}{5}$$

$$AC = \frac{3 \times 5}{2} = 7.5 \, cm$$

II) Démonstration du parallélisme

Rappel

Soit a, b, c, d des nombres avec $b \neq 0$ et $d \neq 0$

 $\frac{a}{b} = \frac{c}{d}$ si et seulement si $a \times d = b \times c$ (c'est le produit en croix)

1) La contraposée du théorème de Thalès

Contraposée du théorème de Thalès :

Si les droites (NC) et (BM) sont sécantes en A

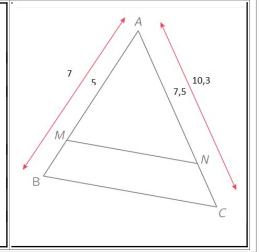
et si
$$\frac{AM}{AB} \neq \frac{AN}{AC} \neq \frac{MN}{BC}$$

alors d'après la contraposée du théorème de Thalès

les droites (MN) et (BC) <u>ne sont pas</u> parallèles.

<u>Exemple</u>

Les droites (MN) et (BC) sont-elles parallèles ?


On compare
$$\frac{AM}{AB} = \frac{5}{7}$$
 et $\frac{AN}{AC} = \frac{7.5}{10.3}$ et $\frac{MN}{BC}$

On a:
$$5 \times 10,3 = 51,5$$
 et $7 \times 7,5 = 52,5$

Donc:
$$\frac{AM}{AB} \neq \frac{AN}{AC}$$

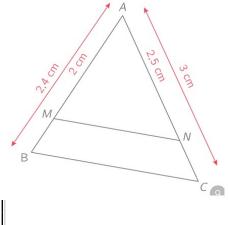
D'après la contraposée du théorème de Thalès,

Les droites (MN) et (BC) ne sont pas parallèles.

2) La réciproque du théorème de Thalès

Réciproque de Thalès

<u>Si</u> les points A, M, B et les points A, N, C sont alignés dans le même ordre


$$\frac{\text{du théorème}}{\text{du théorème}} = \frac{\text{si}}{AB} = \frac{AM}{AC} = \frac{MN}{BC}$$

alors d'après la réciproque du théorème de Thalès

les droites (MN) et (BC) sont parallèles.

<u>Exemple</u>

Démontrer que (MN) et (CB) sont parallèles.

On compare
$$\frac{AM}{AB} = \frac{2}{2.4}$$
 et $\frac{AN}{AC} = \frac{2.5}{3}$ et $\frac{MN}{BC}$

On a
$$2 \times 3 = 6$$
 et $2.5 \times 2.4 = 6$

donc
$$\frac{AM}{AB} = \frac{AN}{AC}$$

D'après la réciproque du théorème de Thalès, Les droites (MN) et (BC) sont parallèles.